Journal of Organometallic Chemistry, 88 (1975) C41–C43 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

CONVERSION OF BUTADIENE INTO 2,4,6-OCTATRIENE BY Pd^o PHOSPHINE COMPLEXES

A. MUSCO and A. SILVANI

Istituto di Chimica delle Macromolecole del C.N.R., Via Alfonso Corti 12 20133 Milano (Italy) (Received February 6th, 1975)

Summary

 CO_2 enhances the catalytic effect of tertiary phosphine—palladium complexes in the dimerization of butadiene to 1,3,7-octatriene and the subsequent isomerization to 2,4,6-octatriene.

The dimerization of butadiene to 1,3,7-octatriene catalyzed by palladium complexes is well known [1]. It was recently shown that the catalytic activity of Pd[PPh₃]₄ and Pt[PPh₃]₃ in the dimerization reaction is greatly enhanced if the reaction is carried out under CO₂ pressure [2]. We are currently studying the dimerization of butadiene catalyzed by several Pd⁰ phosphine complexes [3] in the presence of CO₂ in order to gain some insight into the effects of CO₂ on the catalyst, and we have observed that the PdL_n,CO₂ system (L = tertiary phosphine) is a very effective catalyst for the transformation of butadiene to 2,4,6-octatriene^{*}. In Table 1 the results which have been obtained with Pd[PEt₃]₃, Pd[P(C₆ H₁₁)₃]₂ and Pd[PPh₃]₃ are summarized.

Withdrawal of a small portion of the reaction mixture shortly after the end of the pressure drop due to the consumption of butadiene revealed that 1,3,7-octatriene was the main product. This shows that the reaction proceeds in two steps, the formation of 1,3,7-octatriene followed by its isomerization to 2,4,6-octatriene. The isomerization does not seem to be catalyzed by a Pd^o species. This has been shown treating 1,3,7-octatriene with Pd[PEt₃]₃ both in presence and absence of CO₂. In neither case was 2,4,6-octatriene obtained, whereas the catalyst which is recovered from the Pd[PEt₃]₃, CO₂ and butadiene reaction, and which contains only traces of metallic palladium, is an effective catalyst in the absence of CO₂ for either dimerization of butadiene or isomerization of 1,3,7-octatriene. Since larger quantities of metal

[•]In the absence of CO₂ these complexes catalyze the dimerization of butadiene to 1,3,7-octatriene but the degree of conversion is low even after long reaction times.

- THEIR IN A DOLLAR WITH	THINK				
Catalyst (mmol)	Reaction time (h)	Conversion (B)	Reaction Conversion (%) 1,3,7-Octatriene (%) time (h)	2.4.8-Ociratriene (%) ^b Others (%) ^c	Others (%) c
Pd[PEt _s] ₃ (0.8) Pd[PEt _s] ₃ (0.8)	1.26 3.25	80	05 traces	traces 92 (7:7:31:55)	4 0
Pd[P(C ₆ H ₁₁) ₅], (0.6) Pd[P(C ₆ H ₁₁) ₅], (0.6)	6.5 0	80	05 traces	traces 90 (8:8:30:53)	4 0
Pd[P(C ₆ H ₆) ₅] ₅ (0.7) Pd[P(C ₆ H ₅) ₅] ₅ (0.7)	12 69	09	82 9	traces 84 (6:6:30:58)	16 6
a 200 ml autoclave, butadi	ene 25 g (0.46	mol), CO3 was introt	luced at room temp. in the	^a 200 ml autoclave, butadiene 25 g (0.46 mol), CO ₂ was introduced at room temp. in the reaction vessel already charged with butadiene	ged with butadiene

DIMERIZATION OF BUTADIENE a

TABLE 1

with butadiene

to a total pressure of 8-9 kg/cm², solvent 40 ml of benzene, temp. 110°C. ^b B p. 84-88 °C (100 mmHg): 4 isomers were detected by GLC (0.6% diethyiglycol succinate on 60/80 mesh Carbopack A, 2 mm X 2 m column, 90°C). The *trans,trans,trans* isomer was isoluted by cooling the isomeric mixture at -15°C and crystallizing the resulting white crystalline material from methanol several times [4]. The ¹H NMR spectra of the *t,t,t*-isomer[5(CDCI₃), 1.70 d (*J* 7 Hz, CH₃), 6.60 m -5.95 m (CH)] and of the isomeric mixture are similar.

^c 4-Vinylcyclohexene and other unidentified products.

J

۱

I :

! l .

> I. . :

> > ł I 1 ۱

> > > I

ł

:

C42

were recovered from the $Pd[P(C_6 H_{11})_3]_2$ and $Pd[PPh_3]_3$ runs and the PPh₃ system found to be the least active catalyst, it seems that the isomerization is not due to palladium metal.

These preliminary results suggest that CO_2 , in the presence of butadiene, assists the formation of a Pd^{II} species which is active both for the dimerization of butadiene to 1,3,7-octatriene and for the isomerization of 1,3,7-octatriene to 2,4,6-octatriene.

Acknowledgment

The authors thank Mr. S. Italia for his skillful technical help.

References

- 2 J.F. Kohnle, L.H. Slaugh and K.L. Nakamaye, J. Amer. Chem. Soc., 91 (1969) 5094.
- 3 W. Kuran and A. Musco, Inorg. Chim. Acta, 12 (1975) 187.
- 4 E.A. Zuech, D.L. Crain and R.F. Kleinschmidt, J. Org. Chem., 33 (1968) 771.

¹ J. Tsuji, Accounts Chem. Res., 6 (1973) 8.